Distributions
Distribution
¶
Bases: TensorMakerMixin
, Serializable
Base class for any search distribution.
Source code in evotorch/distributions.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 |
|
__init__(*, solution_length, parameters, dtype=None, device=None)
¶
__init__(...)
: Initialize the Distribution.
It is expected that one of these two conditions is met:
(i) the inheriting search distribution class does not implement its
own __init__(...)
method; or
(ii) the inheriting search distribution class has its own
__init__(...)
method, and calls Distribution.__init__(...)
from there, during its initialization phase.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
solution_length
|
int
|
Expected as an integer, this argument represents the solution length. |
required |
parameters
|
dict
|
Expected as a dictionary, this argument stores
the parameters of the search distribution.
For example, for a Gaussian distribution where |
required |
dtype
|
Optional[DType]
|
The dtype of the search distribution (e.g. torch.float32). |
None
|
device
|
Optional[Device]
|
The device of the search distribution (e.g. "cpu"). |
None
|
Source code in evotorch/distributions.py
compute_gradients(samples, fitnesses, *, objective_sense, ranking_method=None)
¶
Compute and return gradients.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
samples
|
Tensor
|
The solutions that were sampled from this Distribution. The tensor passed via this argument is expected to have the same dtype and device with this Distribution. |
required |
fitnesses
|
Tensor
|
The evaluation results of the sampled solutions. If fitnesses are given with a different dtype (maybe because the eval_dtype of the Problem object is different than its decision variable dtype), then this method will first create an internal copy of the fitnesses with the correct dtype, and then will use those copied fitnesses for computing the gradients. |
required |
objective_sense
|
str
|
The objective sense, expected as "min" or "max". In the case of "min", lower fitness values will be regarded as better (therefore, in this case, one can alternatively refer to fitnesses as 'unfitnesses' or 'solution costs'). In the case of "max", higher fitness values will be regarded as better. |
required |
ranking_method
|
Optional[str]
|
The ranking method to be used. Can be: "linear" (where ranks linearly go from 0 to 1); "centered" (where ranks linearly go from -0.5 to +0.5); "normalized" (where the standard-normalized fitnesses serve as ranks); or "raw" (where the fitnesses themselves serve as ranks). The default is "raw". |
None
|
Source code in evotorch/distributions.py
modified_copy(*, dtype=None, device=None, **parameters)
¶
Return a modified copy of this distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dtype
|
Optional[DType]
|
The new dtype of the distribution. |
None
|
device
|
Optional[Device]
|
The new device of the distribution. |
None
|
parameters
|
Expected in the form of extra keyword arguments. Each of these keyword arguments will cause the new distribution to have a modified value for the specified parameter. |
{}
|
Source code in evotorch/distributions.py
sample(num_solutions=None, *, out=None, generator=None)
¶
Sample solutions from this search distribution.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_solutions
|
Optional[int]
|
How many solutions will be sampled.
If this argument is given as an integer and the argument
|
None
|
out
|
Optional[Tensor]
|
The PyTorch tensor that will be filled with the samples
of this distribution. This tensor is expected as a
2-dimensional tensor with its number of columns equal to
the solution length declared by this distribution.
If the argument |
None
|
generator
|
Any
|
Optionally a PyTorch generator or any object which
has a |
None
|
Source code in evotorch/distributions.py
to(device)
¶
Bring the Distribution onto a computational device.
If the given device is already the device of this Distribution, then the Distribution itself will be returned. If the given device is different than the device of this Distribution, a copy of this Distribution on the given device will be created and returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
device
|
Device
|
The computation device onto which the Distribution will be brought. |
required |
Source code in evotorch/distributions.py
update_parameters(gradients, *, learning_rates=None, optimizers=None)
¶
Do an update on the distribution by following the given gradients.
It is expected that the inheriting class has its own implementation for this method.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
gradients
|
dict
|
Gradients, as a dictionary, which will be used for computing the necessary updates. |
required |
learning_rates
|
Optional[dict]
|
A dictionary which contains learning rates for parameters that will be updated using a learning rate coefficient. |
None
|
optimizers
|
Optional[dict]
|
A dictionary which contains optimizer objects for parameters that will be updated using an adaptive optimizer. |
None
|
Source code in evotorch/distributions.py
ExpGaussian
¶
Bases: Distribution
Exponential Multivariate Gaussian, as used by XNES
Source code in evotorch/distributions.py
813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 |
|
A
property
¶
Alias for self.sigma, for notational consistency with paper
A_inv
property
¶
Alias for self.sigma_inv, for notational consistency with paper
cov
property
¶
The covariance matrix A^T A
mu
property
writable
¶
Getter for mu Returns: mu (torch.Tensor): The center of the search distribution
sigma
property
writable
¶
Getter for sigma Returns: sigma (torch.Tensor): The square root of the covariance matrix
sigma_inv
property
¶
Getter for sigma_inv Returns: sigma_inv (torch.Tensor): The inverse square root of the covariance matrix
to_global_coordinates(local_coordinates)
¶
Map samples from local coordinate space N(0, I_d) to global coordinate space N(mu, A^T A) This function is the inverse of to_local_coordinates Args: local_coordinates (torch.Tensor): The local coordinates sampled from N(0, I_d) Returns: global_coordinates (torch.Tensor): The global coordinates sampled from N(mu, A^T A)
Source code in evotorch/distributions.py
to_local_coordinates(global_coordinates)
¶
Map samples from global coordinate space N(mu, A^T A) to local coordinate space N(0, I_d) This function is the inverse of to_global_coordinates Args: global_coordinates (torch.Tensor): The global coordinates sampled from N(mu, A^T A) Returns: local_coordinates (torch.Tensor): The local coordinates sampled from N(0, I_d)
Source code in evotorch/distributions.py
ExpSeparableGaussian
¶
Bases: SeparableGaussian
Exponential Separable Multivariate Gaussian, as used by SNES
Source code in evotorch/distributions.py
FunctionalGradEstimator
¶
Represents the callable object returned by make_functional_grad_estimator
.
Please see the documentation of make_functional_grad_estimator
Source code in evotorch/distributions.py
1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 |
|
FunctionalSampler
¶
Represents a sampler returned by make_functional_sampler
.
Please see the documentation of make_functional_sampler.
Source code in evotorch/distributions.py
SeparableGaussian
¶
Bases: Distribution
Separable Multivariate Gaussian, as used by PGPE
Source code in evotorch/distributions.py
413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
|
functional_sample(num_solutions, parameters)
classmethod
¶
Sample and return separable Gaussian noise
This is a static utility method, which allows one to sample separable
Gaussian noise, without having to instantiate the distribution class
SeparableGaussian
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_solutions
|
int
|
Number of solutions (or 1-dimensional tensors) that will be sampled. |
required |
parameters
|
dict
|
A parameter dictionary. Within this parameter
dictionary, the item |
required |
Source code in evotorch/distributions.py
SymmetricSeparableGaussian
¶
Bases: SeparableGaussian
Symmetric (antithetic) separable Gaussian distribution as used by PGPE.
For example, if the desired number of samples (or number of solutions,
provided via the argument num_solutions
) is 6, 3 "directions" will
be sampled. Each direction is a pair of solutions, where one of the
solutions is the center vector plus perturbation, and the other
solution is the center vector minus the same perturbation. Therefore,
such a symmetric population of size 6 looks like this:
___
solution[0]: center + sampled_perturbation[0] \
> direction0
solution[1]: center - sampled_perturbation[1] ___/
___
solution[2]: center + sampled_perturbation[2] \
> direction1
solution[3]: center - sampled_perturbation[3] ___/
___
solution[4]: center + sampled_perturbation[4] \
> direction2
solution[5]: center - sampled_perturbation[5] ___/
Source code in evotorch/distributions.py
616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 |
|
functional_sample(num_solutions, parameters)
classmethod
¶
Sample and return symmetric separable Gaussian noise
This is a static utility method, which allows one to sample symmetric
separable Gaussian noise, without having to instantiate the
distribution class SymmetricSeparableGaussian
.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_solutions
|
int
|
Number of solutions (or 1-dimensional tensors)
that will be sampled. Note that, since this distribution is
symmetric, |
required |
parameters
|
dict
|
A parameter dictionary. Within this parameter
dictionary, the item |
required |
Source code in evotorch/distributions.py
make_functional_grad_estimator(distribution_class, *, required_parameters, function=None, objective_sense=None, fixed_parameters=None, ranking_method=None, return_samples=False, return_fitnesses=False)
¶
Make a stateless gradient estimator function.
The returned function estimates gradients for the parameters of the specified distribution, either with the help of a fitness function, or with the help of a pair of tensors representing the samples (or solutions) and their associated fitnesses.
Usage 1: with the help of a fitness function.
Let us assume that we have a fitness function f
, which receives a
matrix (i.e. 2-dimensional tensor) and returns a vector (i.e. a
1-dimensional tensor), where each the i-th row of the matrix represents
the i-th solution, and i-th element of the returned vector represents
the fitness of the i-th solution.
A functional gradient estimator for this function can be created like
this:
from evotorch.distributions import (
SymmetricSeparableGaussian,
make_functional_grad_estimator,
)
def f(x: torch.Tensor) -> torch.Tensor: ...
fgrad = make_functional_grad_estimator(
# The gradient estimator will use this distribution:
SymmetricSeparableGaussian,
# The gradient estimator will be bound to this fitness function:
function=f,
# We want to maximize the fitnesses returned by `f`
# (use "min" for minimizing them)
objective_sense="max",
# The distribution parameters "mu" and "sigma" are to be passed
# as arguments every time we call it as a function.
required_parameters=["mu", "sigma"],
# The fitnesses will be ranked according to this method:
ranking_method="centered", # the default is "raw"
)
Now that we have our gradient estimator fgrad
, we can use it as a
function:
current_mu = ... # mu parameter vector
current_sigma = ... # sigma parameter vector
num_samples = ... # number of samples (temporary population size)
gradients = fgrad(num_samples, current_mu, current_sigma)
# or, alternatively:
# gradients = fgrad(num_samples, mu=current_mu, sigma=current_sigma)
# At this point, we have our `gradients`, which is in the form of a
# dictionary. Gradients for the parameters mu and sigma can be obtained
# from this dictionary like this:
grad_for_mu = gradients["mu"]
grad_for_sigma = gradients["sigma"]
Usage 2: without an explicit fitness function. Let us imagine a scenario where the procedure of computing the fitnesses is not so straightforward and therefore it is not possible to wrap it within a single fitness function. For such cases, we can create and use a gradient estimator that is not bound to any such fitness function:
from evotorch.distributions import (
SymmetricSeparableGaussian,
make_functional_sampler,
make_functional_grad_estimator,
)
estimate_grads = make_functional_grad_estimator(
# The gradient estimator will use this distribution:
SymmetricSeparableGaussian,
# We want to maximize the fitnesses (use "min" for minimizing them)
objective_sense="max",
# The distribution parameters "mu" and "sigma" are to be passed
# as arguments every time we call it as a function.
required_parameters=["mu", "sigma"],
# The fitnesses will be ranked according to this method:
ranking_method="centered", # the default is "raw"
)
Note that without being bound to any fitness function, estimate_grad
will ask us to provide the samples and the fitnesses. A practical way
of obtaining such samples is to have a functional sampler:
get_samples = make_functional_sampler(
SymmetricSeparableGaussian,
required_parameters=["mu", "sigma"],
)
Now we are ready to use our sampler and our estimator:
current_mu = ... # mu parameter vector
current_sigma = ... # sigma parameter vector
num_samples = ... # number of samples (temporary population size)
samples = get_samples(num_samples, current_mu, current_sigma)
# or, alternatively:
# samples = get_samples(num_samples, mu=current_mu, sigma=current_sigma)
fitnesses = ... # code to compute fitnesses from the samples goes here
gradients = estimate_grads(samples, fitnesses, current_mu, current_sigma)
# or, alternatively:
# gradients = estimate_grads(
# samples, fitnesses, mu=current_mu, sigma=current_sigma
# )
# At this point, we have our `gradients`, which is in the form of a
# dictionary. Gradients for the parameters mu and sigma can be obtained
# from this dictionary like this:
grad_for_mu = gradients["mu"]
grad_for_sigma = gradients["sigma"]
Batched gradient estimation.
The function returned by make_functional_grad_estimator
is compatible
with vmap
. If the estimator is bound to a specific fitness function,
that fitness function should also be compatible with vmap
. If the
fitness function is not vmap
-compatible, or if its behavior is
unexpected in the presence of vmap
, then, consider instantiating
the gradient estimator without binding it to a fitness function.
As an alternative to vmap
, a functional sampler has built-in support for
batched sampling (which actually still uses vmap
internally).
Let us again consider our example estimator, estimate_grads
.
In this example, the parameters current_mu
and current_sigma
would be
1-dimensional tensors in the non-batched case (because the distribution
SymmetricSeparableGaussian
expects the parameters mu
and sigma
as
1-dimensional tensors, as can be observed from the class attribute
SymmetricSeparableGaussian.PARAMETER_NDIMS
).
If estimate_grads
is given mu
and/or sigma
with more than 1
dimensions, those extra leftmost dimensions will be considered as batch
dimensions, and therefore the resulting sample tensor will have extra
leftmost dimensions too.
Declaring fixed parameters.
A functional gradient estimator can be created in such a way that some of
the parameters are pre-defined and only a subset of the mandatory parameters
are expected via arguments. For example, a gradient estimator that samples
from SymmetricSeparableGaussian
with a fixed sigma can be defined like
this:
predefined_sigma = ... # The constant sigma goes here
fgrad2 = make_functional_sampler(
SymmetricSeparableGaussian,
function=f,
objective_sense="max",
required_parameters=["mu"],
fixed_parameters={"sigma": predefined_sigma},
ranking_method="centered",
)
The function fgrad2
can be called like this:
gradients = fgrad2(num_samples, current_mu)
# or, alternatively:
# gradients = fgrad2(num_samples, mu=current_mu)
Specifying objective_sense
and/or ranking_method
later.
One can omit objective_sense
and ranking_method
while making the
functional gradient estimator, and specify them later at the moment of
estimation. For example:
fgrad3 = make_functional_sampler(
SymmetricSeparableGaussian,
function=f,
required_parameters=["mu", "sigma"],
# Notice: `objective_sense` and `ranking_method` are omitted
)
...
mu = ...
sigma = ...
gradients = fgrad3(
num_samples,
mu=mu,
sigma=sigma,
objective_sense="max",
ranking_method="centered",
)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
function
|
Optional[Callable]
|
The fitness function that will be called for estimating
the gradients. If provided, the first positional argument of the
returned gradient estimator will be the number of solutions.
If omitted, the first and second positional arguments of the
returned gradient estimator will be the samples (solutions)
and fitnesses.
Please note that this |
None
|
objective_sense
|
Optional[str]
|
Specify this as "max" if a higher fitness value means
better solution. Specify this as "min" if a higher fitness value
means worse solution. Please note that, if |
None
|
required_parameters
|
Iterable
|
A list of strings, each string being the name of a distribution parameter. The order of this list determines the order of parameter-related positional arguments in the returned callable object. |
required |
fixed_parameters
|
Optional[dict]
|
A dictionary where the keys are parameter names (as strings), and the values are pre-defined parameter values. |
None
|
ranking_method
|
Optional[str]
|
Give a string here if you would like the fitnesses to be ranked first. Possible values are "centered", "linear", "raw". |
None
|
return_samples
|
bool
|
Set this as True if you would like the gradient estimator to return not just the gradients, but also the samples (solutions) that were used for estimating the gradients. |
False
|
return_fitnesses
|
bool
|
Set this as True if you would like the gradient estimator to return not just the gradients, but also the fitnesses that were used for estimating the gradients. |
False
|
Source code in evotorch/distributions.py
1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 |
|
make_functional_sampler(distribution_class, *, required_parameters, fixed_parameters=None)
¶
Make a stateless function that samples from a distribution.
This function is meant to be used when one wants to follow the functional programming paradigm.
As an example, let us imagine that we are interested in sampling from the
distribution SymmetricSeparableGaussian
. A sampler function out of this
distribution can be created like this:
from evotorch.distributions import SymmetricSeparableGaussian, make_functional_sampler
get_samples = make_functional_sampler(
SymmetricSeparableGaussian,
required_parameters=["mu", "sigma"],
)
Now we have a function get_samples()
, which can be used like this:
number_of_samples = ... # an integer representing the desired number of samples
mu = ... # a one-dimensional tensor
sigma = ... # a one-dimensional tensor
my_samples = get_samples(number_of_samples, mu, sigma)
Alternatively, the parameters of the distribution can be specified via keyword arguments, like this:
Batched sampling.
A functional sampler can be further transformed via torch.func.vmap(...)
for creating batched samples.
As an alternative to vmap
, a functional sampler has built-in support for
batched sampling (which actually still uses vmap
internally).
Let us again consider our example sampler get_samples
.
In this example, the parameters mu
and sigma
would be 1-dimensional
tensors in the non-batched case (because the distribution
SymmetricSeparableGaussian
expects the parameters mu
and sigma
as
1-dimensional tensors, as can be observed from the class attribute
SymmetricSeparableGaussian.PARAMETER_NDIMS
).
If get_samples
is given mu
and/or sigma
with more than 1 dimensions,
those extra leftmost dimensions will be considered as batch dimensions,
and therefore the resulting sample tensor will have extra leftmost
dimensions too.
Declaring fixed parameters.
A functional sampler can be created in such a way that some of the
parameters are pre-defined and only a subset of the mandatory parameters
are expected via arguments. For example, a sampler that samples from
SymmetricSeparableGaussian
with a fixed sigma can be defined like this:
predefined_sigma = ... # The constant sigma goes here
get_samples2 = make_functional_sampler(
SymmetricSeparableGaussian,
required_parameters=["mu"],
fixed_parameters={"sigma": predefined_sigma},
)
The function get_samples2
can be called like this:
number_of_samples = ... # an integer, representing the desired number of samples
mu = ... # a one-dimensional tensor
# or like this:
# my_samples2 = get_samples2(number_of_samples, mu=mu)
How the functional sampler uses its wrapped distribution.
If the wrapped distribution class has a static method with the signature
functional_sample(num_solutions: int, parameters: dict) -> torch.Tensor
(which expects num_solutions
as the number of solutions/samples
and parameters
as the parameter dictionary), this functional sampler
will use that static method to obtain and return the samples.
On the other hand, if the wrapped distribution class declares its class
attribute functional_sample = NotImplemented
, then, the wrapped
distribution class will be temporarily instantiated, and then, the
sample()
method of this instance will be used to generate and return
the samples.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
distribution_class
|
A class that inherits from the base class Distribution. |
required | |
required_parameters
|
Iterable
|
A list of strings, each string being the name of a distribution parameter. The order of this list determines the order of parameter-related positional arguments in the returned callable object. |
required |
fixed_parameters
|
Optional[dict]
|
A dictionary where the keys are parameter names (as strings), and the values are pre-defined parameter values. |
None
|
Source code in evotorch/distributions.py
1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 |
|