Neproblem
This namespace contains the NeuroevolutionProblem
class.
NEProblem
¶
Bases: BaseNEProblem
Base class for neuro-evolution problems where the goal is to optimize the parameters of a neural network represented as a PyTorch module.
Any problem inheriting from this class is expected to override the method
_evaluate_network(self, net: torch.nn.Module) -> Union[torch.Tensor, float]
where net
is the neural network to be evaluated, and the return value
is a scalar or a vector (for multi-objective cases) expressing the
fitness value(s).
Alternatively, this class can be directly instantiated in the following way:
def f(module: MyTorchModuleClass) -> Union[float, torch.Tensor, tuple]:
# Evaluate the given PyTorch module here
fitness = ...
return fitness
problem = NEProblem("min", MyTorchModuleClass, f, ...)
which specifies that the problem's goal is to minimize the return of the
function f
.
For multi-objective cases, the fitness returned by f
is expected as a
1-dimensional tensor. For when the problem has additional evaluation data,
a two-element tuple can be returned by f
instead, where the first
element is the fitness value(s) and the second element is a 1-dimensional
tensor storing the additional data.
Source code in evotorch/neuroevolution/neproblem.py
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 |
|
network_device
property
¶
The device on which the problem should place data e.g. the network
__init__(objective_sense, network, network_eval_func=None, *, network_args=None, initial_bounds=(-1e-05, 1e-05), eval_dtype=None, eval_data_length=0, seed=None, num_actors=None, actor_config=None, num_gpus_per_actor=None, num_subbatches=None, subbatch_size=None, device=None)
¶
__init__(...)
: Initialize the NEProblem.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
objective_sense
|
ObjectiveSense
|
The objective sense, expected as "min" or "max" for single-objective cases, or as a sequence of strings (each string being "min" or "max") for multi-objective cases. |
required |
network
|
Union[str, Module, Callable[[], Module]]
|
A network structure string, or a Callable (which can be
a class inheriting from |
required |
network_eval_func
|
Optional[Callable]
|
Optionally a function (or any Callable object)
which receives a PyTorch module as its argument, and returns
either a fitness, or a two-element tuple containing the fitness
and the additional evaluation data. The fitness can be a scalar
(for single-objective cases) or a 1-dimensional tensor (for
multi-objective cases). The additional evaluation data is
expected as a 1-dimensional tensor.
If this argument is left as None, it will be expected that
the method |
None
|
network_args
|
Optional[dict]
|
Optionally a dict-like object, storing keyword arguments to be passed to the network while instantiating it. |
None
|
initial_bounds
|
Optional[BoundsPairLike]
|
Specifies an interval from which the values of the initial neural network parameters will be drawn. |
(-1e-05, 1e-05)
|
eval_dtype
|
Optional[DType]
|
dtype to be used for fitnesses. If not specified, then
|
None
|
eval_data_length
|
int
|
Length of the extra evaluation data. |
0
|
seed
|
Optional[int]
|
Random number seed. If left as None, this NEProblem instance will not have its own random generator, and the global random generator of PyTorch will be used instead. |
None
|
num_actors
|
Optional[Union[int, str]]
|
Number of actors to create for parallelized
evaluation of the solutions.
Certain string values are also accepted.
When given as "max" or as "num_cpus", the number of actors
will be equal to the number of all available CPUs in the ray
cluster.
When given as "num_gpus", the number of actors will be
equal to the number of all available GPUs in the ray
cluster, and each actor will be assigned a GPU.
When given as "num_devices", the number of actors will be
equal to the minimum among the number of CPUs and the number
of GPUs available in the cluster (or will be equal to the
number of CPUs if there is no GPU), and each actor will be
assigned a GPU (if available).
If |
None
|
actor_config
|
Optional[dict]
|
A dictionary, representing the keyword arguments
to be passed to the options(...) used when creating the
ray actor objects. To be used for explicitly allocating
resources per each actor.
For example, for declaring that each actor is to use a GPU,
one can pass |
None
|
num_gpus_per_actor
|
Optional[Union[int, float, str]]
|
Number of GPUs to be allocated by each
remote actor.
The default behavior is to NOT allocate any GPU at all
(which is the default behavior of the ray library as well).
When given as a number |
None
|
num_subbatches
|
Optional[int]
|
If |
None
|
subbatch_size
|
Optional[int]
|
If |
None
|
device
|
Optional[Device]
|
Default device in which a new population will be generated and the neural networks will operate. If not specified, "cpu" will be used. |
None
|
Source code in evotorch/neuroevolution/neproblem.py
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
|
make_net(parameters)
¶
Make a new network filled with the provided parameters.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parameters
|
Iterable
|
Parameters to be used as weights within the network. Can be a Solution, or any 1-dimensional Iterable that can be converted to a PyTorch tensor. |
required |
Source code in evotorch/neuroevolution/neproblem.py
network_constants()
¶
Named constants which can be passed to the network instantiation
parameterize_net(parameters)
¶
Parameterize the network with a given set of parameters. Args: parameters (torch.Tensor): The parameters with which to instantiate the network Returns: instantiated_network (nn.Module): The network instantiated with the parameters