Supervisedne
SupervisedNE
¶
Bases: NEProblem
Representation of a neuro-evolution problem where the goal is to minimize a loss function in a supervised learning setting.
A supervised learning problem can be defined via subclassing this class
and overriding the methods
_loss(y_hat, y)
(which is to define how the loss is computed)
and _make_dataloader()
(which is to define how a new DataLoader is
created).
Alternatively, this class can be directly instantiated as follows:
def my_loss_function(output_of_network, desired_output):
loss = ... # compute the loss here
return loss
problem = SupervisedNE(
my_dataset, MyTorchModuleClass, my_loss_function, minibatch_size=..., ...
)
Source code in evotorch/neuroevolution/supervisedne.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 |
|
__init__(dataset, network, loss_func=None, *, network_args=None, initial_bounds=(-1e-05, 1e-05), minibatch_size=None, num_minibatches=None, num_actors=None, common_minibatch=True, num_gpus_per_actor=None, actor_config=None, num_subbatches=None, subbatch_size=None, device=None)
¶
__init__(...)
: Initialize the SupervisedNE.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset
|
Dataset
|
The Dataset from which the minibatches will be pulled |
required |
network
|
Union[str, Module, Callable[[], Module]]
|
A network structure string, or a Callable (which can be
a class inheriting from |
required |
loss_func
|
Optional[Callable]
|
Optionally a function (or a Callable object) which
receives |
None
|
network_args
|
Optional[dict]
|
Optionally a dict-like object, storing keyword arguments to be passed to the network while instantiating it. |
None
|
initial_bounds
|
Optional[BoundsPairLike]
|
Specifies an interval from which the values of the initial neural network parameters will be drawn. |
(-1e-05, 1e-05)
|
minibatch_size
|
Optional[int]
|
Optionally an integer, describing the size of a
minibatch when pulling data from the dataset.
Can also be left as None, in which case it will be expected
that the inheriting class overrides the method
|
None
|
num_minibatches
|
Optional[int]
|
An integer, specifying over how many minibatches will a single neural network be evaluated. If not specified, it will be assumed that the desired number of minibatches per network evaluation is 1. |
None
|
num_actors
|
Optional[Union[int, str]]
|
Number of actors to create for parallelized
evaluation of the solutions.
Certain string values are also accepted.
When given as "max" or as "num_cpus", the number of actors
will be equal to the number of all available CPUs in the ray
cluster.
When given as "num_gpus", the number of actors will be
equal to the number of all available GPUs in the ray
cluster, and each actor will be assigned a GPU.
When given as "num_devices", the number of actors will be
equal to the minimum among the number of CPUs and the number
of GPUs available in the cluster (or will be equal to the
number of CPUs if there is no GPU), and each actor will be
assigned a GPU (if available).
If |
None
|
common_minibatch
|
bool
|
Whether the same minibatches will be used when evaluating the solutions or not. |
True
|
actor_config
|
Optional[dict]
|
A dictionary, representing the keyword arguments
to be passed to the options(...) used when creating the
ray actor objects. To be used for explicitly allocating
resources per each actor.
For example, for declaring that each actor is to use a GPU,
one can pass |
None
|
num_gpus_per_actor
|
Optional[Union[int, float, str]]
|
Number of GPUs to be allocated by each
remote actor.
The default behavior is to NOT allocate any GPU at all
(which is the default behavior of the ray library as well).
When given as a number |
None
|
num_subbatches
|
Optional[int]
|
If |
None
|
subbatch_size
|
Optional[int]
|
If |
None
|
device
|
Optional[Device]
|
Default device in which a new population will be generated and the neural networks will operate. If not specified, "cpu" will be used. |
None
|
Source code in evotorch/neuroevolution/supervisedne.py
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
|
get_minibatch()
¶
Get the next minibatch from the DataLoader.
Source code in evotorch/neuroevolution/supervisedne.py
loss(y_hat, y)
¶
Run the loss function and return the loss.
If the __init__
of SupervisedNE
class was given a loss
function via the argument loss_func
, then that loss function
will be used. Otherwise, it will be expected that the method
_loss(...)
is overriden with a loss definition, and that method
will be used to compute the loss.
The computed loss will be returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
y_hat
|
Any
|
The output estimated by the network |
required |
y
|
Any
|
The desired output |
required |
Source code in evotorch/neuroevolution/supervisedne.py
make_dataloader()
¶
Make a new DataLoader.
If the __init__
of SupervisedNE
was provided with a minibatch size
via the argument minibatch_size
, then a new DataLoader will be made
with that minibatch size.
Otherwise, it will be expected that the method _make_dataloader(...)
was overridden to contain details regarding how the DataLoader should be
created, and that method will be executed.
Returns:
Type | Description |
---|---|
DataLoader
|
The created DataLoader. |