readonlytensor
ReadOnlyTensor (Tensor)
¶
A special type of tensor which is read-only.
This is a subclass of torch.Tensor
which explicitly disallows
operations that would cause in-place modifications.
Since ReadOnlyTensor if a subclass of torch.Tensor
, most
non-destructive PyTorch operations are on this tensor are supported.
Cloning a ReadOnlyTensor using the clone()
method or Python's
deepcopy(...)
function results in a regular PyTorch tensor.
Reshaping or slicing operations might return a ReadOnlyTensor if the
result ends up being a view of the original ReadOnlyTensor; otherwise,
the returned tensor is a regular torch.Tensor
.
Source code in evotorch/tools/readonlytensor.py
class ReadOnlyTensor(torch.Tensor):
"""
A special type of tensor which is read-only.
This is a subclass of `torch.Tensor` which explicitly disallows
operations that would cause in-place modifications.
Since ReadOnlyTensor if a subclass of `torch.Tensor`, most
non-destructive PyTorch operations are on this tensor are supported.
Cloning a ReadOnlyTensor using the `clone()` method or Python's
`deepcopy(...)` function results in a regular PyTorch tensor.
Reshaping or slicing operations might return a ReadOnlyTensor if the
result ends up being a view of the original ReadOnlyTensor; otherwise,
the returned tensor is a regular `torch.Tensor`.
"""
def __getattribute__(self, attribute_name: str) -> Any:
if (
isinstance(attribute_name, str)
and attribute_name.endswith("_")
and (not ((attribute_name.startswith("__")) and (attribute_name.endswith("__"))))
):
raise AttributeError(
f"A ReadOnlyTensor explicitly disables all members whose names end with '_'."
f" Cannot access member {repr(attribute_name)}."
)
else:
return super().__getattribute__(attribute_name)
def __cannot_modify(self, *ignore, **ignore_too):
raise TypeError("The contents of a ReadOnlyTensor cannot be modified")
__setitem__ = __cannot_modify
__iadd__ = __cannot_modify
__iand__ = __cannot_modify
__idiv__ = __cannot_modify
__ifloordiv__ = __cannot_modify
__ilshift__ = __cannot_modify
__imatmul__ = __cannot_modify
__imod__ = __cannot_modify
__imul__ = __cannot_modify
__ior__ = __cannot_modify
__ipow__ = __cannot_modify
__irshift__ = __cannot_modify
__isub__ = __cannot_modify
__itruediv__ = __cannot_modify
__ixor__ = __cannot_modify
if _torch_older_than_1_12:
# Define __str__ and __repr__ for when using PyTorch 1.11 or older.
# With PyTorch 1.12, overriding __str__ and __repr__ are not necessary.
def __to_string(self) -> str:
s = super().__repr__()
if "\n" not in s:
return f"ReadOnlyTensor({super().__repr__()})"
else:
indenter = " " * 4
s = (indenter + s.replace("\n", "\n" + indenter)).rstrip()
return f"ReadOnlyTensor(\n{s}\n)"
__str__ = __to_string
__repr__ = __to_string
def clone(self) -> torch.Tensor:
return super().clone().as_subclass(torch.Tensor)
def __mutable_if_independent(self, other: torch.Tensor) -> torch.Tensor:
self_ptr = self.storage().data_ptr()
other_ptr = other.storage().data_ptr()
if self_ptr != other_ptr:
other = other.as_subclass(torch.Tensor)
return other
def __getitem__(self, index_or_slice) -> torch.Tensor:
result = super().__getitem__(index_or_slice)
return self.__mutable_if_independent(result)
def reshape(self, *args, **kwargs) -> torch.Tensor:
result = super().reshape(*args, **kwargs)
return self.__mutable_if_independent(result)
def numpy(self) -> np.ndarray:
arr: np.ndarray = torch.Tensor.numpy(self)
arr.flags["WRITEABLE"] = False
return arr
def __array__(self, *args, **kwargs) -> np.ndarray:
arr: np.ndarray = super().__array__(*args, **kwargs)
arr.flags["WRITEABLE"] = False
return arr
# def __copy__(self):
# return ReadOnlyTensor(copy(self.as_subclass(torch.Tensor)))
# def __deepcopy__(self, memo):
# return deepcopy(self.as_subclass(torch.Tensor), memo)
@classmethod
def __torch_function__(cls, func: Callable, types: Iterable, args: tuple = (), kwargs: Optional[Mapping] = None):
if (kwargs is not None) and ("out" in kwargs):
if isinstance(kwargs["out"], ReadOnlyTensor):
raise TypeError(
f"The `out` keyword argument passed to {func} is a ReadOnlyTensor."
f" A ReadOnlyTensor explicitly fails when referenced via the `out` keyword argument of any torch"
f" function."
f" This restriction is for making sure that the torch operations which could normally do in-place"
f" modifications do not operate on ReadOnlyTensor instances."
)
return super().__torch_function__(func, types, args, kwargs)
__torch_function__(func, types, args=(), kwargs=None)
classmethod
special
¶
This torch_function implementation wraps subclasses such that
methods called on subclasses return a subclass instance instead of
a torch.Tensor
instance.
One corollary to this is that you need coverage for torch.Tensor methods if implementing torch_function for subclasses.
We recommend always calling super().__torch_function__
as the base
case when doing the above.
While not mandatory, we recommend making __torch_function__
a classmethod.
Source code in evotorch/tools/readonlytensor.py
@classmethod
def __torch_function__(cls, func: Callable, types: Iterable, args: tuple = (), kwargs: Optional[Mapping] = None):
if (kwargs is not None) and ("out" in kwargs):
if isinstance(kwargs["out"], ReadOnlyTensor):
raise TypeError(
f"The `out` keyword argument passed to {func} is a ReadOnlyTensor."
f" A ReadOnlyTensor explicitly fails when referenced via the `out` keyword argument of any torch"
f" function."
f" This restriction is for making sure that the torch operations which could normally do in-place"
f" modifications do not operate on ReadOnlyTensor instances."
)
return super().__torch_function__(func, types, args, kwargs)
clone(self)
¶
numpy(self)
¶
numpy() -> numpy.ndarray
Returns :attr:self
tensor as a NumPy :class:ndarray
. This tensor and the
returned :class:ndarray
share the same underlying storage. Changes to
:attr:self
tensor will be reflected in the :class:ndarray
and vice versa.
reshape(self, *args, **kwargs)
¶
reshape(*shape) -> Tensor
Returns a tensor with the same data and number of elements as :attr:self
but with the specified shape. This method returns a view if :attr:shape
is
compatible with the current shape. See :meth:torch.Tensor.view
on when it is
possible to return a view.
See :func:torch.reshape
Parameters:
Name | Type | Description | Default |
---|---|---|---|
shape |
tuple of ints or int... |
the desired shape |
required |
as_read_only_tensor(x, *, dtype=None, device=None)
¶
Convert the given object to a ReadOnlyTensor.
The provided object can be a scalar, or an Iterable of numeric data, or an ObjectArray.
This function can be thought as the read-only counterpart of PyTorch's
torch.as_tensor(...)
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Any |
The object to be converted to a ReadOnlyTensor. |
required |
dtype |
Optional[torch.dtype] |
The dtype of the new ReadOnlyTensor (e.g. torch.float32).
If this argument is not specified, dtype will be inferred from |
None |
device |
Union[str, torch.device] |
The device in which the ReadOnlyTensor will be stored
(e.g. "cpu").
If this argument is not specified, the device which is storing
the original |
None |
Returns:
Type | Description |
---|---|
Iterable |
The read-only counterpart of the provided object. |
Source code in evotorch/tools/readonlytensor.py
def as_read_only_tensor(
x: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[str, torch.device]] = None
) -> Iterable:
"""
Convert the given object to a ReadOnlyTensor.
The provided object can be a scalar, or an Iterable of numeric data,
or an ObjectArray.
This function can be thought as the read-only counterpart of PyTorch's
`torch.as_tensor(...)` function.
Args:
x: The object to be converted to a ReadOnlyTensor.
dtype: The dtype of the new ReadOnlyTensor (e.g. torch.float32).
If this argument is not specified, dtype will be inferred from `x`.
For example, if `x` is a PyTorch tensor or a numpy array, its
existing dtype will be kept.
device: The device in which the ReadOnlyTensor will be stored
(e.g. "cpu").
If this argument is not specified, the device which is storing
the original `x` will be re-used.
Returns:
The read-only counterpart of the provided object.
"""
from .objectarray import ObjectArray
kwargs = _device_and_dtype_kwargs(dtype=dtype, device=device)
if isinstance(x, ObjectArray):
if len(kwargs) != 0:
raise ValueError(
f"read_only_tensor(...): when making a read-only tensor from an ObjectArray,"
f" the arguments `dtype` and `device` were not expected."
f" However, the received keyword arguments are: {kwargs}."
)
return x.get_read_only_view()
else:
return torch.as_tensor(x, **kwargs).as_subclass(ReadOnlyTensor)
read_only_tensor(x, *, dtype=None, device=None)
¶
Make a ReadOnlyTensor from the given object.
The provided object can be a scalar, or an Iterable of numeric data, or an ObjectArray.
This function can be thought as the read-only counterpart of PyTorch's
torch.tensor(...)
function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x |
Any |
The object from which the new ReadOnlyTensor will be made. |
required |
dtype |
Optional[torch.dtype] |
The dtype of the new ReadOnlyTensor (e.g. torch.float32). |
None |
device |
Union[str, torch.device] |
The device in which the ReadOnlyTensor will be stored (e.g. "cpu"). |
None |
Returns:
Type | Description |
---|---|
Iterable |
The new read-only tensor. |
Source code in evotorch/tools/readonlytensor.py
def read_only_tensor(
x: Any, *, dtype: Optional[torch.dtype] = None, device: Optional[Union[str, torch.device]] = None
) -> Iterable:
"""
Make a ReadOnlyTensor from the given object.
The provided object can be a scalar, or an Iterable of numeric data,
or an ObjectArray.
This function can be thought as the read-only counterpart of PyTorch's
`torch.tensor(...)` function.
Args:
x: The object from which the new ReadOnlyTensor will be made.
dtype: The dtype of the new ReadOnlyTensor (e.g. torch.float32).
device: The device in which the ReadOnlyTensor will be stored
(e.g. "cpu").
Returns:
The new read-only tensor.
"""
from .objectarray import ObjectArray
kwargs = _device_and_dtype_kwargs(dtype=dtype, device=device)
if isinstance(x, ObjectArray):
if len(kwargs) != 0:
raise ValueError(
f"read_only_tensor(...): when making a read-only tensor from an ObjectArray,"
f" the arguments `dtype` and `device` were not expected."
f" However, the received keyword arguments are: {kwargs}."
)
return x.get_read_only_view()
else:
return torch.as_tensor(x, **kwargs).as_subclass(ReadOnlyTensor)