Functional
ModuleExpectingFlatParameters
¶
A wrapper which brings a functional interface around a torch module.
Similar to functorch.FunctionalModule
, ModuleExpectingFlatParameters
turns a torch.nn.Module
instance to a function which expects a new
leftmost argument representing the parameters of the network.
Unlike functorch.FunctionalModule
, a ModuleExpectingFlatParameters
instance, as its name suggests, expects the network parameters to be
given as a 1-dimensional (i.e. flattened) tensor.
Also, unlike functorch.FunctionalModule
, an instance of
ModuleExpectingFlatParameters
is NOT an instance of torch.nn.Module
.
PyTorch modules with buffers can be wrapped by this class, but it is assumed that those buffers are constant. If the wrapped module changes the value(s) of its buffer(s) during its forward passes, most probably things will NOT work right.
As an example, let us consider the following linear layer.
The functional counterpart of net
can be obtained via:
from evotorch.neuroevolution.net import ModuleExpectingFlatParameters
fnet = ModuleExpectingFlatParameters(net)
Now, fnet
is a callable object which expects network parameters
and network inputs. Let us call fnet
with randomly generated network
parameters and with a randomly generated input tensor.
param_length = fnet.parameter_length
random_parameters = torch.randn(param_length)
random_input = torch.randn(3)
result = fnet(random_parameters, random_input)
Source code in evotorch/neuroevolution/net/functional.py
class ModuleExpectingFlatParameters:
"""
A wrapper which brings a functional interface around a torch module.
Similar to `functorch.FunctionalModule`, `ModuleExpectingFlatParameters`
turns a `torch.nn.Module` instance to a function which expects a new
leftmost argument representing the parameters of the network.
Unlike `functorch.FunctionalModule`, a `ModuleExpectingFlatParameters`
instance, as its name suggests, expects the network parameters to be
given as a 1-dimensional (i.e. flattened) tensor.
Also, unlike `functorch.FunctionalModule`, an instance of
`ModuleExpectingFlatParameters` is NOT an instance of `torch.nn.Module`.
PyTorch modules with buffers can be wrapped by this class, but it is
assumed that those buffers are constant. If the wrapped module changes
the value(s) of its buffer(s) during its forward passes, most probably
things will NOT work right.
As an example, let us consider the following linear layer.
```python
import torch
from torch import nn
net = nn.Linear(3, 8)
```
The functional counterpart of `net` can be obtained via:
```python
from evotorch.neuroevolution.net import ModuleExpectingFlatParameters
fnet = ModuleExpectingFlatParameters(net)
```
Now, `fnet` is a callable object which expects network parameters
and network inputs. Let us call `fnet` with randomly generated network
parameters and with a randomly generated input tensor.
```python
param_length = fnet.parameter_length
random_parameters = torch.randn(param_length)
random_input = torch.randn(3)
result = fnet(random_parameters, random_input)
```
"""
@torch.no_grad()
def __init__(self, net: nn.Module, *, disable_autograd_tracking: bool = False):
"""
`__init__(...)`: Initialize the `ModuleExpectingFlatParameters` instance.
Args:
net: The module that is to be wrapped by a functional interface.
disable_autograd_tracking: If given as True, all operations
regarding the wrapped module will be performed in the context
`torch.no_grad()`, forcefully disabling the autograd.
If given as False, autograd will not be affected.
The default is False.
"""
# Declare the variables which will store information regarding the parameters of the module.
self.__param_names = []
self.__param_shapes = []
self.__param_length = 0
self.__param_slices = []
self.__num_params = 0
# Iterate over the parameters of the module and fill the related information.
i = 0
j = 0
for pname, p in net.named_parameters():
self.__param_names.append(pname)
shape = p.shape
self.__param_shapes.append(shape)
length = _shape_length(shape)
self.__param_length += length
j = i + length
self.__param_slices.append(slice(i, j))
i = j
self.__num_params += 1
self.__buffer_dict = {bname: b.clone() for bname, b in net.named_buffers()}
self.__net = deepcopy(net)
self.__net.to("meta")
self.__disable_autograd_tracking = bool(disable_autograd_tracking)
def __transfer_buffers(self, x: torch.Tensor):
"""
Transfer the buffer tensors to the device of the given tensor.
Args:
x: The tensor whose device will also store the buffer tensors.
"""
for bname in self.__buffer_dict.keys():
self.__buffer_dict[bname] = torch.as_tensor(self.__buffer_dict[bname], device=x.device)
@property
def buffers(self) -> tuple:
"""Get the stored buffers"""
return tuple(self.__buffer_dict)
@property
def parameter_length(self) -> int:
return self.__param_length
def __call__(self, parameter_vector: torch.Tensor, x: torch.Tensor, h: Any = None) -> Any:
"""
Call the wrapped module's forward pass procedure.
Args:
parameter_vector: A 1-dimensional tensor which represents the
parameters of the tensor.
x: The inputs.
h: Hidden state(s), in case this is a recurrent network.
Returns:
The result of the forward pass.
"""
if parameter_vector.ndim != 1:
raise ValueError(
f"Expected the parameters as 1 dimensional,"
f" but the received parameter vector has {parameter_vector.ndim} dimensions"
)
if len(parameter_vector) != self.__param_length:
raise ValueError(
f"Expected a parameter vector of length {self.__param_length},"
f" but the received parameter vector's length is {len(parameter_vector)}."
)
state_args = [] if h is None else [h]
params_and_buffers = {}
for i, pname in enumerate(self.__param_names):
param_slice = self.__param_slices[i]
param_shape = self.__param_shapes[i]
param = parameter_vector[param_slice].reshape(param_shape)
params_and_buffers[pname] = param
# Make sure that the buffer tensors are in the same device with x
self.__transfer_buffers(x)
# Add the buffer tensors to the dictionary `params_and_buffers`
params_and_buffers.update(self.__buffer_dict)
# Prepare the no-gradient context if gradient tracking is disabled
context = torch.no_grad() if self.__disable_autograd_tracking else nullcontext()
# Run the module and return the results
with context:
return functional_call(self.__net, params_and_buffers, tuple([x, *state_args]))
buffers: tuple
property
readonly
¶
Get the stored buffers
__call__(self, parameter_vector, x, h=None)
special
¶
Call the wrapped module's forward pass procedure.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
parameter_vector |
Tensor |
A 1-dimensional tensor which represents the parameters of the tensor. |
required |
x |
Tensor |
The inputs. |
required |
h |
Any |
Hidden state(s), in case this is a recurrent network. |
None |
Returns:
Type | Description |
---|---|
Any |
The result of the forward pass. |
Source code in evotorch/neuroevolution/net/functional.py
def __call__(self, parameter_vector: torch.Tensor, x: torch.Tensor, h: Any = None) -> Any:
"""
Call the wrapped module's forward pass procedure.
Args:
parameter_vector: A 1-dimensional tensor which represents the
parameters of the tensor.
x: The inputs.
h: Hidden state(s), in case this is a recurrent network.
Returns:
The result of the forward pass.
"""
if parameter_vector.ndim != 1:
raise ValueError(
f"Expected the parameters as 1 dimensional,"
f" but the received parameter vector has {parameter_vector.ndim} dimensions"
)
if len(parameter_vector) != self.__param_length:
raise ValueError(
f"Expected a parameter vector of length {self.__param_length},"
f" but the received parameter vector's length is {len(parameter_vector)}."
)
state_args = [] if h is None else [h]
params_and_buffers = {}
for i, pname in enumerate(self.__param_names):
param_slice = self.__param_slices[i]
param_shape = self.__param_shapes[i]
param = parameter_vector[param_slice].reshape(param_shape)
params_and_buffers[pname] = param
# Make sure that the buffer tensors are in the same device with x
self.__transfer_buffers(x)
# Add the buffer tensors to the dictionary `params_and_buffers`
params_and_buffers.update(self.__buffer_dict)
# Prepare the no-gradient context if gradient tracking is disabled
context = torch.no_grad() if self.__disable_autograd_tracking else nullcontext()
# Run the module and return the results
with context:
return functional_call(self.__net, params_and_buffers, tuple([x, *state_args]))
__init__(self, net, *, disable_autograd_tracking=False)
special
¶
__init__(...)
: Initialize the ModuleExpectingFlatParameters
instance.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
net |
Module |
The module that is to be wrapped by a functional interface. |
required |
disable_autograd_tracking |
bool |
If given as True, all operations
regarding the wrapped module will be performed in the context
|
False |
Source code in evotorch/neuroevolution/net/functional.py
@torch.no_grad()
def __init__(self, net: nn.Module, *, disable_autograd_tracking: bool = False):
"""
`__init__(...)`: Initialize the `ModuleExpectingFlatParameters` instance.
Args:
net: The module that is to be wrapped by a functional interface.
disable_autograd_tracking: If given as True, all operations
regarding the wrapped module will be performed in the context
`torch.no_grad()`, forcefully disabling the autograd.
If given as False, autograd will not be affected.
The default is False.
"""
# Declare the variables which will store information regarding the parameters of the module.
self.__param_names = []
self.__param_shapes = []
self.__param_length = 0
self.__param_slices = []
self.__num_params = 0
# Iterate over the parameters of the module and fill the related information.
i = 0
j = 0
for pname, p in net.named_parameters():
self.__param_names.append(pname)
shape = p.shape
self.__param_shapes.append(shape)
length = _shape_length(shape)
self.__param_length += length
j = i + length
self.__param_slices.append(slice(i, j))
i = j
self.__num_params += 1
self.__buffer_dict = {bname: b.clone() for bname, b in net.named_buffers()}
self.__net = deepcopy(net)
self.__net.to("meta")
self.__disable_autograd_tracking = bool(disable_autograd_tracking)
make_functional_module(net, *, disable_autograd_tracking=False)
¶
Wrap a torch module so that it has a functional interface.
Similar to functorch.make_functional(...)
, this function turns a
torch.nn.Module
instance to a function which expects a new leftmost
argument representing the parameters of the network.
Unlike with functorch.make_functional(...)
, the parameters of the
network are expected in a 1-dimensional (i.e. flattened) tensor.
PyTorch modules with buffers can be wrapped by this class, but it is assumed that those buffers are constant. If the wrapped module changes the value(s) of its buffer(s) during its forward passes, most probably things will NOT work right.
As an example, let us consider the following linear layer.
The functional counterpart of net
can be obtained via:
Now, fnet
is a callable object which expects network parameters
and network inputs. Let us call fnet
with randomly generated network
parameters and with a randomly generated input tensor.
param_length = fnet.parameter_length
random_parameters = torch.randn(param_length)
random_input = torch.randn(3)
result = fnet(random_parameters, random_input)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
net |
Module |
The |
required |
disable_autograd_tracking |
bool |
If given as True, all operations
regarding the wrapped module will be performed in the context
|
False |
Returns:
Type | Description |
---|---|
ModuleExpectingFlatParameters |
The functional wrapper, as an instance of
|
Source code in evotorch/neuroevolution/net/functional.py
def make_functional_module(net: nn.Module, *, disable_autograd_tracking: bool = False) -> ModuleExpectingFlatParameters:
"""
Wrap a torch module so that it has a functional interface.
Similar to `functorch.make_functional(...)`, this function turns a
`torch.nn.Module` instance to a function which expects a new leftmost
argument representing the parameters of the network.
Unlike with `functorch.make_functional(...)`, the parameters of the
network are expected in a 1-dimensional (i.e. flattened) tensor.
PyTorch modules with buffers can be wrapped by this class, but it is
assumed that those buffers are constant. If the wrapped module changes
the value(s) of its buffer(s) during its forward passes, most probably
things will NOT work right.
As an example, let us consider the following linear layer.
```python
import torch
from torch import nn
net = nn.Linear(3, 8)
```
The functional counterpart of `net` can be obtained via:
```python
from evotorch.neuroevolution.net import make_functional_module
fnet = make_functional_module(net)
```
Now, `fnet` is a callable object which expects network parameters
and network inputs. Let us call `fnet` with randomly generated network
parameters and with a randomly generated input tensor.
```python
param_length = fnet.parameter_length
random_parameters = torch.randn(param_length)
random_input = torch.randn(3)
result = fnet(random_parameters, random_input)
```
Args:
net: The `torch.nn.Module` instance to be wrapped by a functional
interface.
disable_autograd_tracking: If given as True, all operations
regarding the wrapped module will be performed in the context
`torch.no_grad()`, forcefully disabling the autograd.
If given as False, autograd will not be affected.
The default is False.
Returns:
The functional wrapper, as an instance of
`evotorch.neuroevolution.net.ModuleExpectingFlatParameters`.
"""
return ModuleExpectingFlatParameters(net, disable_autograd_tracking=disable_autograd_tracking)