Skip to content

Runningnorm

CollectedStats (tuple)

CollectedStats(mean, stdev)

__getnewargs__(self) special

Return self as a plain tuple. Used by copy and pickle.

Source code in evotorch/neuroevolution/net/runningnorm.py
def __getnewargs__(self):
    'Return self as a plain tuple.  Used by copy and pickle.'
    return _tuple(self)

__new__(_cls, mean, stdev) special staticmethod

Create new instance of CollectedStats(mean, stdev)

__repr__(self) special

Return a nicely formatted representation string

Source code in evotorch/neuroevolution/net/runningnorm.py
def __repr__(self):
    'Return a nicely formatted representation string'
    return self.__class__.__name__ + repr_fmt % self

ObsNormLayer (Module)

An observation normalizer which behaves as a PyTorch Module.

Source code in evotorch/neuroevolution/net/runningnorm.py
class ObsNormLayer(nn.Module):
    """
    An observation normalizer which behaves as a PyTorch Module.
    """

    def __init__(
        self, mean: torch.Tensor, stdev: torch.Tensor, low: Optional[float] = None, high: Optional[float] = None
    ) -> None:
        """
        `__init__(...)`: Initialize the ObsNormLayer.

        Args:
            mean: The mean according to which the observations are to be
                normalized.
            stdev: The standard deviation according to which the observations
                are to be normalized.
            low: Optionally a real number if the result of the normalization
                is to be clipped. Represents the lower bound for the clipping
                operation.
            high: Optionally a real number if the result of the normalization
                is to be clipped. Represents the upper bound for the clipping
                operation.
        """
        super().__init__()
        self.register_buffer("_mean", mean)
        self.register_buffer("_stdev", stdev)
        self._lb = None if low is None else float(low)
        self._ub = None if high is None else float(high)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        Normalize an observation or a batch of observations.

        Args:
            x: The observation(s).
        Returns:
            The normalized counterpart of the observation(s).
        """
        return _clamp((x - self._mean) / self._stdev, self._lb, self._ub)

__init__(self, mean, stdev, low=None, high=None) special

__init__(...): Initialize the ObsNormLayer.

Parameters:

Name Type Description Default
mean Tensor

The mean according to which the observations are to be normalized.

required
stdev Tensor

The standard deviation according to which the observations are to be normalized.

required
low Optional[float]

Optionally a real number if the result of the normalization is to be clipped. Represents the lower bound for the clipping operation.

None
high Optional[float]

Optionally a real number if the result of the normalization is to be clipped. Represents the upper bound for the clipping operation.

None
Source code in evotorch/neuroevolution/net/runningnorm.py
def __init__(
    self, mean: torch.Tensor, stdev: torch.Tensor, low: Optional[float] = None, high: Optional[float] = None
) -> None:
    """
    `__init__(...)`: Initialize the ObsNormLayer.

    Args:
        mean: The mean according to which the observations are to be
            normalized.
        stdev: The standard deviation according to which the observations
            are to be normalized.
        low: Optionally a real number if the result of the normalization
            is to be clipped. Represents the lower bound for the clipping
            operation.
        high: Optionally a real number if the result of the normalization
            is to be clipped. Represents the upper bound for the clipping
            operation.
    """
    super().__init__()
    self.register_buffer("_mean", mean)
    self.register_buffer("_stdev", stdev)
    self._lb = None if low is None else float(low)
    self._ub = None if high is None else float(high)

forward(self, x)

Normalize an observation or a batch of observations.

Parameters:

Name Type Description Default
x Tensor

The observation(s).

required

Returns:

Type Description
Tensor

The normalized counterpart of the observation(s).

Source code in evotorch/neuroevolution/net/runningnorm.py
def forward(self, x: torch.Tensor) -> torch.Tensor:
    """
    Normalize an observation or a batch of observations.

    Args:
        x: The observation(s).
    Returns:
        The normalized counterpart of the observation(s).
    """
    return _clamp((x - self._mean) / self._stdev, self._lb, self._ub)

RunningNorm

An online observation normalization tool

Source code in evotorch/neuroevolution/net/runningnorm.py
class RunningNorm:
    """
    An online observation normalization tool
    """

    def __init__(
        self,
        *,
        shape: Union[tuple, int],
        dtype: DType,
        device: Optional[Device] = None,
        min_variance: float = 1e-2,
        clip: Optional[tuple] = None,
    ) -> None:
        """
        `__init__(...)`: Initialize the RunningNorm

        Args:
            shape: Observation shape. Can be an integer or a tuple.
            dtype: The dtype of the observations.
            device: The device in which the observation stats are held.
                If left as None, the device is assumed to be "cpu".
            min_variance: A lower bound for the variance to be used in
                the normalization computations.
                In other words, if the computed variance according to the
                collected observations ends up lower than `min_variance`,
                this `min_variance` will be used instead (in an elementwise
                manner) while computing the normalized observations.
                As in Salimans et al. (2017), the default is 1e-2.
            clip: Can be left as None (which is the default), or can be
                given as a pair of real numbers.
                This is used for clipping the observations after the
                normalization operation.
                In Salimans et al. (2017), (-5.0, +5.0) was used.
        """

        # Make sure that the shape is stored as a torch.Size object.
        if isinstance(shape, Iterable):
            self._shape = torch.Size(shape)
        else:
            self._shape = torch.Size([int(shape)])

        # Store the number of dimensions
        self._ndim = len(self._shape)

        # Store the dtype and the device
        self._dtype = to_torch_dtype(dtype)
        self._device = "cpu" if device is None else device

        # Initialize the internally stored data as empty
        self._sum: Optional[torch.Tensor] = None
        self._sum_of_squares: Optional[torch.Tensor] = None
        self._count: int = 0

        # Store the minimum variance
        self._min_variance = float(min_variance)

        if clip is not None:
            # If a clip tuple was provided, store the specified lower and upper bounds
            lb, ub = clip
            self._lb = float(lb)
            self._ub = float(ub)
        else:
            # If a clip tuple was not provided the bounds are stored as None
            self._lb = None
            self._ub = None

    def to(self, device: Device) -> "RunningNorm":
        """
        If the target device is a different device, then make a copy of this
        RunningNorm instance on the target device.
        If the target device is the same with this RunningNorm's device, then
        return this RunningNorm itself.

        Args:
            device: The target device.
        Returns:
            The RunningNorm on the target device. This can be a copy, or the
            original RunningNorm instance itself.
        """
        if torch.device(device) == torch.device(self.device):
            return self
        else:
            new_running_norm = object.__new__(type(self))

            already_handled = {"_sum", "_sum_of_squares", "_device"}
            new_running_norm._sum = self._sum.to(device)
            new_running_norm._sum_of_squares = self._sum_of_squares.to(device)
            new_running_norm._device = device

            for k, v in self.__dict__.items():
                if k not in already_handled:
                    setattr(new_running_norm, k, deepcopy(v))

            return new_running_norm

    @property
    def device(self) -> Device:
        """
        The device in which the observation stats are held
        """
        return self._device

    @property
    def dtype(self) -> DType:
        """
        The dtype of the stored observation stats
        """
        return self._dtype

    @property
    def shape(self) -> tuple:
        """
        Observation shape
        """
        return self._shape

    @property
    def min_variance(self) -> float:
        """
        Minimum variance
        """
        return self._min_variance

    @property
    def low(self) -> Optional[float]:
        """
        The lower component of the bounds given in the `clip` tuple.
        If `clip` was initialized as None, this is also None.
        """
        return self._lb

    @property
    def high(self) -> Optional[float]:
        """
        The higher (upper) component of the bounds given in the `clip` tuple.
        If `clip` was initialized as None, this is also None.
        """
        return self._ub

    def _like_its_own(self, x: Iterable) -> torch.Tensor:
        return torch.as_tensor(x, dtype=self._dtype, device=self._device)

    def _verify(self, x: Iterable) -> torch.Tensor:
        x = self._like_its_own(x)
        if x.ndim == self._ndim:
            if x.shape != self._shape:
                raise ValueError(
                    f"This RunningNorm instance was initialized with shape: {self._shape}."
                    f" However, the provided tensor has an incompatible shape: {x._shape}."
                )
        elif x.ndim == (self._ndim + 1):
            if x.shape[1:] != self._shape:
                raise ValueError(
                    f"This RunningNorm instance was initialized with shape: {self._shape}."
                    f" The provided tensor is shaped {x.shape}."
                    f" Accepting the tensor's leftmost dimension as the batch size,"
                    f" the remaining shape is incompatible: {x.shape[1:]}"
                )
        else:
            raise ValueError(
                f"This RunningNorm instance was initialized with shape: {self._shape}."
                f" The provided tensor is shaped {x.shape}."
                f" The number of dimensions of the given tensor is incompatible."
            )
        return x

    def _has_no_data(self) -> bool:
        return (self._sum is None) and (self._sum_of_squares is None) and (self._count == 0)

    def _has_data(self) -> bool:
        return (self._sum is not None) and (self._sum_of_squares is not None) and (self._count > 0)

    def reset(self):
        """
        Remove all the collected observation data.
        """
        self._sum = None
        self._sum_of_squares = None
        self._count = 0

    @torch.no_grad()
    def update(self, x: Union[Iterable, "RunningNorm"], mask: Optional[Iterable] = None, *, verify: bool = True):
        """
        Update the stored stats with new observation data.

        Args:
            x: The new observation(s), as a PyTorch tensor, or any Iterable
                that can be converted to a PyTorch tensor, or another
                RunningNorm instance.
                If given as a tensor or as an Iterable, the shape of `x` can
                be the same with observation shape, or it can be augmented
                with an extra leftmost dimension.
                In the case of augmented dimension, `x` is interpreted not as
                a single observation, but as a batch of observations.
                If `x` is another RunningNorm instance, the stats stored by
                this RunningNorm instance will be updated with all the data
                stored by `x`.
            mask: Can be given as a 1-dimensional Iterable of booleans ONLY
                if `x` represents a batch of observations.
                If a `mask` is provided, the i-th observation within the
                observation batch `x` will be taken into account only if
                the i-th item of the `mask` is True.
            verify: Whether or not to verify the shape of the given Iterable
                objects. The default is True.
        """
        if isinstance(x, RunningNorm):
            # If we are to update our stats according to another RunningNorm instance

            if x._count > 0:
                # We bother only if x is non-empty

                if mask is not None:
                    # We were given another RunningNorm, not a batch of observations.
                    # So, we do not expect to receive a mask tensor.
                    # If a mask was provided, then this is an unexpected way of calling this function.
                    # We therefore raise an error.
                    raise ValueError(
                        "The `mask` argument is expected as None if the first argument is a RunningNorm."
                        " However, `mask` is found as something other than None."
                    )

                if self._shape != x._shape:
                    # If the shapes of this RunningNorm and of the other RunningNorm
                    # do not match, then we cannot use `x` for updating our stats.
                    # It might be the case that `x` was initialized for another
                    # task, with differently sized observations.
                    # We therefore raise an error.
                    raise ValueError(
                        f"The RunningNorm to be updated has the shape {self._shape}"
                        f" The other RunningNorm has the shape {self._shape}"
                        f" These shapes are incompatible."
                    )

                if self._has_no_data():
                    # If this RunningNorm has no data at all, then we clone the
                    # data of x.
                    self._sum = self._like_its_own(x._sum.clone())
                    self._sum_of_squares = self._like_its_own(x._sum_of_squares.clone())
                    self._count = x._count
                elif self._has_data():
                    # If this RunningNorm has its own data, then we update the
                    # stored data with the data stored by x.
                    self._sum += self._like_its_own(x._sum)
                    self._sum_of_squares += self._like_its_own(x._sum_of_squares)
                    self._count += x._count
                else:
                    assert False, "RunningNorm is in an invalid state! This might be a bug."
        else:
            # This is the case where the received argument x is not a
            # RunningNorm object, but an Iterable.

            if verify:
                # If we have the `verify` flag, then we make sure that
                # x is a tensor of the correct shape
                x = self._verify(x)

            if x.ndim == self._ndim:
                # If the shape of x is exactly the same with the observation shape
                # then we assume that x represents a single observation, and not a
                # batch of observations.

                if mask is not None:
                    # Since we are dealing with a single observation,
                    # we do not expect to receive a mask argument.
                    # If the mask argument was provided, then this is an unexpected
                    # usage of this function.
                    # We therefore raise an error.
                    raise ValueError(
                        "The `mask` argument is expected as None if the first argument is a single observation"
                        " (i.e. not a batch of observations, with an extra leftmost dimension)."
                        " However, `mask` is found as something other than None."
                    )

                # Since x is a single observation,
                # the sum of observations extracted from x is x itself,
                # and the sum of squared observations extracted from x is
                # the square of x itself.
                sum_of_x = x
                sum_of_x_squared = x.square()
                # We extracted a single observation from x
                n = 1
            elif x.ndim == (self._ndim + 1):
                # If the number of dimensions of x is one more than the number
                # of dimensions of this RunningNorm, then we assume that x is a batch
                # of observations.

                if mask is not None:
                    # If a mask is provided, then we first make sure that it is a tensor
                    # of dtype bool in the correct device.
                    mask = torch.as_tensor(mask, dtype=torch.bool, device=self._device)

                    if mask.ndim != 1:
                        # We expect the mask to be 1-dimensional.
                        # If not, we raise an error.
                        raise ValueError(
                            f"The `mask` tensor was expected as a 1-dimensional tensor."
                            f" However, its shape is {mask.shape}."
                        )

                    if len(mask) != x.shape[0]:
                        # If the length of the mask is not the batch size of x,
                        # then there is a mismatch.
                        # We therefore raise an error.
                        raise ValueError(
                            f"The shape of the given tensor is {x.shape}."
                            f" Therefore, the batch size of observations is {x.shape[0]}."
                            f" However, the given `mask` tensor does not has an incompatible length: {len(mask)}."
                        )

                    # We compute how many True items we have in the mask.
                    # This integer gives us how many observations we extract from x.
                    n = int(torch.sum(torch.as_tensor(mask, dtype=torch.int64, device=self._device)))

                    # We now re-cast the mask as the observation dtype (so that True items turn to 1.0
                    # and False items turn to 0.0), and then increase its number of dimensions so that
                    # it can operate directly with x.
                    mask = self._like_its_own(mask).reshape(torch.Size([x.shape[0]] + ([1] * (x.ndim - 1))))

                    # Finally, we multiply x with the mask. This means that the observations with corresponding
                    # mask values as False are zeroed out.
                    x = x * mask
                else:
                    # This is the case where we did not receive a mask.
                    # We can simply say that the number of observations to extract from x
                    # is the size of its leftmost dimension, i.e. the batch size.
                    n = x.shape[0]

                # With or without a mask, we are now ready to extract the sum and sum of squares
                # from x.
                sum_of_x = torch.sum(x, dim=0)
                sum_of_x_squared = torch.sum(x.square(), dim=0)
            else:
                # This is the case where the number of dimensions of x is unrecognized.
                # This case is actually already checked by the _verify(...) method earlier.
                # This defensive fallback case is only for when verify=False and it turned out
                # that the ndim is invalid.
                raise ValueError(f"Invalid shape: {x.shape}")

            # At this point, we handled all the valid cases regarding the Iterable x,
            # and we have our sum_of_x (sum of all observations), sum_of_squares
            # (sum of all squared observations), and n (number of observations extracted
            # from x).

            if self._has_no_data():
                # If our RunningNorm is empty, the observation data we extracted from x
                # become our RunningNorm's new data.
                self._sum = sum_of_x
                self._sum_of_squares = sum_of_x_squared
                self._count = n
            elif self._has_data():
                # If our RunningNorm is not empty, the stored data is updated with the
                # data extracted from x.
                self._sum += sum_of_x
                self._sum_of_squares += sum_of_x_squared
                self._count += n
            else:
                # This is an erroneous state where the internal data looks neither
                # existent nor completely empty.
                # This might be the result of a bug, or maybe this instance's
                # protected variables were tempered with from the outside.
                assert False, "RunningNorm is in an invalid state! This might be a bug."

    @property
    @torch.no_grad()
    def stats(self) -> CollectedStats:
        """
        The collected data's mean and standard deviation (stdev) in a tuple
        """

        # Using the internally stored sum, sum_of_squares, and count,
        # compute E[x] and E[x^2]
        E_x = self._sum / self._count
        E_x2 = self._sum_of_squares / self._count

        # The mean is E[x]
        mean = E_x

        # The variance is E[x^2] - (E[x])^2, elementwise clipped such that
        # it cannot go below min_variance
        variance = _clamp(E_x2 - E_x.square(), self._min_variance, None)

        # Standard deviation is finally computed as the square root of the variance
        stdev = torch.sqrt(variance)

        # Return the stats in a named tuple
        return CollectedStats(mean=mean, stdev=stdev)

    @property
    def mean(self) -> torch.Tensor:
        """
        The collected data's mean
        """
        return self._sum / self._count

    @property
    def stdev(self) -> torch.Tensor:
        """
        The collected data's standard deviation
        """
        return self.stats.stdev

    @property
    def sum(self) -> torch.Tensor:
        """
        The collected data's sum
        """
        return self._sum

    @property
    def sum_of_squares(self) -> torch.Tensor:
        """
        Sum of squares of the collected data
        """
        return self._sum_of_squares

    @property
    def count(self) -> int:
        """
        Number of observations encountered
        """
        return self._count

    @torch.no_grad()
    def normalize(self, x: Iterable, *, result_as_numpy: Optional[bool] = None, verify: bool = True) -> Iterable:
        """
        Normalize the given observation x.

        Args:
            x: The observation(s), as a PyTorch tensor, or any Iterable
                that is convertable to a PyTorch tensor.
                `x` can be a single observation, or it can be a batch
                of observations (with an extra leftmost dimension).
            result_as_numpy: Whether or not to return the normalized
                observation as a numpy array.
                If left as None (which is the default), then the returned
                type depends on x: a PyTorch tensor is returned if x is a
                PyTorch tensor, and a numpy array is returned otherwise.
                If True, the result is always a numpy array.
                If False, the result is always a PyTorch tensor.
            verify: Whether or not to check the type and dimensions of x.
                This is True by default.
                Note that, if `verify` is False, this function will not
                properly check the type of `x` and will assume that `x`
                is a PyTorch tensor.
        Returns:
            The normalized observation, as a PyTorch tensor or a numpy array.
        """

        if self._count == 0:
            # If this RunningNorm instance has no data yet,
            # then we do not know how to do the normalization.
            # We therefore raise an error.
            raise ValueError("Cannot do normalization because no data is collected yet.")

        if verify:
            # Here we verify the type and shape of x.

            if result_as_numpy is None:
                # If there is not an explicit request about the return type,
                # we infer the return type from the type of x:
                # if x is a tensor, we return a tensor;
                # otherwise, we assume x to be a CPU-bound iterable, and
                # therefore we return a numpy array.
                result_as_numpy = not isinstance(x, torch.Tensor)
            else:
                result_as_numpy = bool(result_as_numpy)

            # We call _verify() to make sure that x is of correct shape
            # and is properly converted to a PyTorch tensor.
            x = self._verify(x)

        # We get the mean and stdev of the collected data
        mean, stdev = self.stats

        # Now we compute the normalized observation, clipped according to the
        # lower and upper bounds expressed by the `clip` tuple, if exists.
        result = _clamp((x - mean) / stdev, self._lb, self._ub)

        if result_as_numpy:
            # If we are to return the result as a numpy array, we do the
            # necessary conversion.
            result = result.cpu().numpy()

        # Finally, return the result
        return result

    @torch.no_grad()
    def update_and_normalize(self, x: Iterable, mask: Optional[Iterable] = None) -> Iterable:
        """
        Update the observation stats according to x, then normalize x.

        Args:
            x: The observation(s), as a PyTorch tensor, or as an Iterable
                which can be converted to a PyTorch tensor.
                The shape of x can be the same with the observaiton shape,
                or it can be augmented with an extra leftmost dimension
                to express a batch of observations.
            mask: Can be given as a 1-dimensional Iterable of booleans ONLY
                if `x` represents a batch of observations.
                If a `mask` is provided, the i-th observation within the
                observation batch `x` will be taken into account only if
                the the i-th item of the `mask` is True.
        Returns:
            The normalized counterpart of the observation(s) expressed by x.
        """
        result_as_numpy = not isinstance(x, torch.Tensor)
        x = self._verify(x)

        self.update(x, mask, verify=False)
        result = self.normalize(x, verify=False)

        if result_as_numpy:
            result = result.cpu().numpy()

        return result

    def to_layer(self) -> "ObsNormLayer":
        """
        Make a PyTorch module which normalizes the its inputs.

        Returns:
            An ObsNormLayer instance.
        """
        mean, stdev = self.stats
        low = self.low
        high = self.high
        return ObsNormLayer(mean=mean, stdev=stdev, low=low, high=high)

    def __repr__(self) -> str:
        return f"<{self.__class__.__name__}, count: {self.count}>"

    def __copy__(self) -> "RunningNorm":
        return deepcopy(self)

count: int property readonly

Number of observations encountered

device: Union[str, torch.device] property readonly

The device in which the observation stats are held

dtype: Union[str, torch.dtype, numpy.dtype, Type] property readonly

The dtype of the stored observation stats

high: Optional[float] property readonly

The higher (upper) component of the bounds given in the clip tuple. If clip was initialized as None, this is also None.

low: Optional[float] property readonly

The lower component of the bounds given in the clip tuple. If clip was initialized as None, this is also None.

mean: Tensor property readonly

The collected data's mean

min_variance: float property readonly

Minimum variance

shape: tuple property readonly

Observation shape

stats: CollectedStats property readonly

The collected data's mean and standard deviation (stdev) in a tuple

stdev: Tensor property readonly

The collected data's standard deviation

sum: Tensor property readonly

The collected data's sum

sum_of_squares: Tensor property readonly

Sum of squares of the collected data

__init__(self, *, shape, dtype, device=None, min_variance=0.01, clip=None) special

__init__(...): Initialize the RunningNorm

Parameters:

Name Type Description Default
shape Union[tuple, int]

Observation shape. Can be an integer or a tuple.

required
dtype Union[str, torch.dtype, numpy.dtype, Type]

The dtype of the observations.

required
device Union[str, torch.device]

The device in which the observation stats are held. If left as None, the device is assumed to be "cpu".

None
min_variance float

A lower bound for the variance to be used in the normalization computations. In other words, if the computed variance according to the collected observations ends up lower than min_variance, this min_variance will be used instead (in an elementwise manner) while computing the normalized observations. As in Salimans et al. (2017), the default is 1e-2.

0.01
clip Optional[tuple]

Can be left as None (which is the default), or can be given as a pair of real numbers. This is used for clipping the observations after the normalization operation. In Salimans et al. (2017), (-5.0, +5.0) was used.

None
Source code in evotorch/neuroevolution/net/runningnorm.py
def __init__(
    self,
    *,
    shape: Union[tuple, int],
    dtype: DType,
    device: Optional[Device] = None,
    min_variance: float = 1e-2,
    clip: Optional[tuple] = None,
) -> None:
    """
    `__init__(...)`: Initialize the RunningNorm

    Args:
        shape: Observation shape. Can be an integer or a tuple.
        dtype: The dtype of the observations.
        device: The device in which the observation stats are held.
            If left as None, the device is assumed to be "cpu".
        min_variance: A lower bound for the variance to be used in
            the normalization computations.
            In other words, if the computed variance according to the
            collected observations ends up lower than `min_variance`,
            this `min_variance` will be used instead (in an elementwise
            manner) while computing the normalized observations.
            As in Salimans et al. (2017), the default is 1e-2.
        clip: Can be left as None (which is the default), or can be
            given as a pair of real numbers.
            This is used for clipping the observations after the
            normalization operation.
            In Salimans et al. (2017), (-5.0, +5.0) was used.
    """

    # Make sure that the shape is stored as a torch.Size object.
    if isinstance(shape, Iterable):
        self._shape = torch.Size(shape)
    else:
        self._shape = torch.Size([int(shape)])

    # Store the number of dimensions
    self._ndim = len(self._shape)

    # Store the dtype and the device
    self._dtype = to_torch_dtype(dtype)
    self._device = "cpu" if device is None else device

    # Initialize the internally stored data as empty
    self._sum: Optional[torch.Tensor] = None
    self._sum_of_squares: Optional[torch.Tensor] = None
    self._count: int = 0

    # Store the minimum variance
    self._min_variance = float(min_variance)

    if clip is not None:
        # If a clip tuple was provided, store the specified lower and upper bounds
        lb, ub = clip
        self._lb = float(lb)
        self._ub = float(ub)
    else:
        # If a clip tuple was not provided the bounds are stored as None
        self._lb = None
        self._ub = None

normalize(self, x, *, result_as_numpy=None, verify=True)

Normalize the given observation x.

Parameters:

Name Type Description Default
x Iterable

The observation(s), as a PyTorch tensor, or any Iterable that is convertable to a PyTorch tensor. x can be a single observation, or it can be a batch of observations (with an extra leftmost dimension).

required
result_as_numpy Optional[bool]

Whether or not to return the normalized observation as a numpy array. If left as None (which is the default), then the returned type depends on x: a PyTorch tensor is returned if x is a PyTorch tensor, and a numpy array is returned otherwise. If True, the result is always a numpy array. If False, the result is always a PyTorch tensor.

None
verify bool

Whether or not to check the type and dimensions of x. This is True by default. Note that, if verify is False, this function will not properly check the type of x and will assume that x is a PyTorch tensor.

True

Returns:

Type Description
Iterable

The normalized observation, as a PyTorch tensor or a numpy array.

Source code in evotorch/neuroevolution/net/runningnorm.py
@torch.no_grad()
def normalize(self, x: Iterable, *, result_as_numpy: Optional[bool] = None, verify: bool = True) -> Iterable:
    """
    Normalize the given observation x.

    Args:
        x: The observation(s), as a PyTorch tensor, or any Iterable
            that is convertable to a PyTorch tensor.
            `x` can be a single observation, or it can be a batch
            of observations (with an extra leftmost dimension).
        result_as_numpy: Whether or not to return the normalized
            observation as a numpy array.
            If left as None (which is the default), then the returned
            type depends on x: a PyTorch tensor is returned if x is a
            PyTorch tensor, and a numpy array is returned otherwise.
            If True, the result is always a numpy array.
            If False, the result is always a PyTorch tensor.
        verify: Whether or not to check the type and dimensions of x.
            This is True by default.
            Note that, if `verify` is False, this function will not
            properly check the type of `x` and will assume that `x`
            is a PyTorch tensor.
    Returns:
        The normalized observation, as a PyTorch tensor or a numpy array.
    """

    if self._count == 0:
        # If this RunningNorm instance has no data yet,
        # then we do not know how to do the normalization.
        # We therefore raise an error.
        raise ValueError("Cannot do normalization because no data is collected yet.")

    if verify:
        # Here we verify the type and shape of x.

        if result_as_numpy is None:
            # If there is not an explicit request about the return type,
            # we infer the return type from the type of x:
            # if x is a tensor, we return a tensor;
            # otherwise, we assume x to be a CPU-bound iterable, and
            # therefore we return a numpy array.
            result_as_numpy = not isinstance(x, torch.Tensor)
        else:
            result_as_numpy = bool(result_as_numpy)

        # We call _verify() to make sure that x is of correct shape
        # and is properly converted to a PyTorch tensor.
        x = self._verify(x)

    # We get the mean and stdev of the collected data
    mean, stdev = self.stats

    # Now we compute the normalized observation, clipped according to the
    # lower and upper bounds expressed by the `clip` tuple, if exists.
    result = _clamp((x - mean) / stdev, self._lb, self._ub)

    if result_as_numpy:
        # If we are to return the result as a numpy array, we do the
        # necessary conversion.
        result = result.cpu().numpy()

    # Finally, return the result
    return result

reset(self)

Remove all the collected observation data.

Source code in evotorch/neuroevolution/net/runningnorm.py
def reset(self):
    """
    Remove all the collected observation data.
    """
    self._sum = None
    self._sum_of_squares = None
    self._count = 0

to(self, device)

If the target device is a different device, then make a copy of this RunningNorm instance on the target device. If the target device is the same with this RunningNorm's device, then return this RunningNorm itself.

Parameters:

Name Type Description Default
device Union[str, torch.device]

The target device.

required

Returns:

Type Description
RunningNorm

The RunningNorm on the target device. This can be a copy, or the original RunningNorm instance itself.

Source code in evotorch/neuroevolution/net/runningnorm.py
def to(self, device: Device) -> "RunningNorm":
    """
    If the target device is a different device, then make a copy of this
    RunningNorm instance on the target device.
    If the target device is the same with this RunningNorm's device, then
    return this RunningNorm itself.

    Args:
        device: The target device.
    Returns:
        The RunningNorm on the target device. This can be a copy, or the
        original RunningNorm instance itself.
    """
    if torch.device(device) == torch.device(self.device):
        return self
    else:
        new_running_norm = object.__new__(type(self))

        already_handled = {"_sum", "_sum_of_squares", "_device"}
        new_running_norm._sum = self._sum.to(device)
        new_running_norm._sum_of_squares = self._sum_of_squares.to(device)
        new_running_norm._device = device

        for k, v in self.__dict__.items():
            if k not in already_handled:
                setattr(new_running_norm, k, deepcopy(v))

        return new_running_norm

to_layer(self)

Make a PyTorch module which normalizes the its inputs.

Returns:

Type Description
ObsNormLayer

An ObsNormLayer instance.

Source code in evotorch/neuroevolution/net/runningnorm.py
def to_layer(self) -> "ObsNormLayer":
    """
    Make a PyTorch module which normalizes the its inputs.

    Returns:
        An ObsNormLayer instance.
    """
    mean, stdev = self.stats
    low = self.low
    high = self.high
    return ObsNormLayer(mean=mean, stdev=stdev, low=low, high=high)

update(self, x, mask=None, *, verify=True)

Update the stored stats with new observation data.

Parameters:

Name Type Description Default
x Union[Iterable, RunningNorm]

The new observation(s), as a PyTorch tensor, or any Iterable that can be converted to a PyTorch tensor, or another RunningNorm instance. If given as a tensor or as an Iterable, the shape of x can be the same with observation shape, or it can be augmented with an extra leftmost dimension. In the case of augmented dimension, x is interpreted not as a single observation, but as a batch of observations. If x is another RunningNorm instance, the stats stored by this RunningNorm instance will be updated with all the data stored by x.

required
mask Optional[Iterable]

Can be given as a 1-dimensional Iterable of booleans ONLY if x represents a batch of observations. If a mask is provided, the i-th observation within the observation batch x will be taken into account only if the i-th item of the mask is True.

None
verify bool

Whether or not to verify the shape of the given Iterable objects. The default is True.

True
Source code in evotorch/neuroevolution/net/runningnorm.py
@torch.no_grad()
def update(self, x: Union[Iterable, "RunningNorm"], mask: Optional[Iterable] = None, *, verify: bool = True):
    """
    Update the stored stats with new observation data.

    Args:
        x: The new observation(s), as a PyTorch tensor, or any Iterable
            that can be converted to a PyTorch tensor, or another
            RunningNorm instance.
            If given as a tensor or as an Iterable, the shape of `x` can
            be the same with observation shape, or it can be augmented
            with an extra leftmost dimension.
            In the case of augmented dimension, `x` is interpreted not as
            a single observation, but as a batch of observations.
            If `x` is another RunningNorm instance, the stats stored by
            this RunningNorm instance will be updated with all the data
            stored by `x`.
        mask: Can be given as a 1-dimensional Iterable of booleans ONLY
            if `x` represents a batch of observations.
            If a `mask` is provided, the i-th observation within the
            observation batch `x` will be taken into account only if
            the i-th item of the `mask` is True.
        verify: Whether or not to verify the shape of the given Iterable
            objects. The default is True.
    """
    if isinstance(x, RunningNorm):
        # If we are to update our stats according to another RunningNorm instance

        if x._count > 0:
            # We bother only if x is non-empty

            if mask is not None:
                # We were given another RunningNorm, not a batch of observations.
                # So, we do not expect to receive a mask tensor.
                # If a mask was provided, then this is an unexpected way of calling this function.
                # We therefore raise an error.
                raise ValueError(
                    "The `mask` argument is expected as None if the first argument is a RunningNorm."
                    " However, `mask` is found as something other than None."
                )

            if self._shape != x._shape:
                # If the shapes of this RunningNorm and of the other RunningNorm
                # do not match, then we cannot use `x` for updating our stats.
                # It might be the case that `x` was initialized for another
                # task, with differently sized observations.
                # We therefore raise an error.
                raise ValueError(
                    f"The RunningNorm to be updated has the shape {self._shape}"
                    f" The other RunningNorm has the shape {self._shape}"
                    f" These shapes are incompatible."
                )

            if self._has_no_data():
                # If this RunningNorm has no data at all, then we clone the
                # data of x.
                self._sum = self._like_its_own(x._sum.clone())
                self._sum_of_squares = self._like_its_own(x._sum_of_squares.clone())
                self._count = x._count
            elif self._has_data():
                # If this RunningNorm has its own data, then we update the
                # stored data with the data stored by x.
                self._sum += self._like_its_own(x._sum)
                self._sum_of_squares += self._like_its_own(x._sum_of_squares)
                self._count += x._count
            else:
                assert False, "RunningNorm is in an invalid state! This might be a bug."
    else:
        # This is the case where the received argument x is not a
        # RunningNorm object, but an Iterable.

        if verify:
            # If we have the `verify` flag, then we make sure that
            # x is a tensor of the correct shape
            x = self._verify(x)

        if x.ndim == self._ndim:
            # If the shape of x is exactly the same with the observation shape
            # then we assume that x represents a single observation, and not a
            # batch of observations.

            if mask is not None:
                # Since we are dealing with a single observation,
                # we do not expect to receive a mask argument.
                # If the mask argument was provided, then this is an unexpected
                # usage of this function.
                # We therefore raise an error.
                raise ValueError(
                    "The `mask` argument is expected as None if the first argument is a single observation"
                    " (i.e. not a batch of observations, with an extra leftmost dimension)."
                    " However, `mask` is found as something other than None."
                )

            # Since x is a single observation,
            # the sum of observations extracted from x is x itself,
            # and the sum of squared observations extracted from x is
            # the square of x itself.
            sum_of_x = x
            sum_of_x_squared = x.square()
            # We extracted a single observation from x
            n = 1
        elif x.ndim == (self._ndim + 1):
            # If the number of dimensions of x is one more than the number
            # of dimensions of this RunningNorm, then we assume that x is a batch
            # of observations.

            if mask is not None:
                # If a mask is provided, then we first make sure that it is a tensor
                # of dtype bool in the correct device.
                mask = torch.as_tensor(mask, dtype=torch.bool, device=self._device)

                if mask.ndim != 1:
                    # We expect the mask to be 1-dimensional.
                    # If not, we raise an error.
                    raise ValueError(
                        f"The `mask` tensor was expected as a 1-dimensional tensor."
                        f" However, its shape is {mask.shape}."
                    )

                if len(mask) != x.shape[0]:
                    # If the length of the mask is not the batch size of x,
                    # then there is a mismatch.
                    # We therefore raise an error.
                    raise ValueError(
                        f"The shape of the given tensor is {x.shape}."
                        f" Therefore, the batch size of observations is {x.shape[0]}."
                        f" However, the given `mask` tensor does not has an incompatible length: {len(mask)}."
                    )

                # We compute how many True items we have in the mask.
                # This integer gives us how many observations we extract from x.
                n = int(torch.sum(torch.as_tensor(mask, dtype=torch.int64, device=self._device)))

                # We now re-cast the mask as the observation dtype (so that True items turn to 1.0
                # and False items turn to 0.0), and then increase its number of dimensions so that
                # it can operate directly with x.
                mask = self._like_its_own(mask).reshape(torch.Size([x.shape[0]] + ([1] * (x.ndim - 1))))

                # Finally, we multiply x with the mask. This means that the observations with corresponding
                # mask values as False are zeroed out.
                x = x * mask
            else:
                # This is the case where we did not receive a mask.
                # We can simply say that the number of observations to extract from x
                # is the size of its leftmost dimension, i.e. the batch size.
                n = x.shape[0]

            # With or without a mask, we are now ready to extract the sum and sum of squares
            # from x.
            sum_of_x = torch.sum(x, dim=0)
            sum_of_x_squared = torch.sum(x.square(), dim=0)
        else:
            # This is the case where the number of dimensions of x is unrecognized.
            # This case is actually already checked by the _verify(...) method earlier.
            # This defensive fallback case is only for when verify=False and it turned out
            # that the ndim is invalid.
            raise ValueError(f"Invalid shape: {x.shape}")

        # At this point, we handled all the valid cases regarding the Iterable x,
        # and we have our sum_of_x (sum of all observations), sum_of_squares
        # (sum of all squared observations), and n (number of observations extracted
        # from x).

        if self._has_no_data():
            # If our RunningNorm is empty, the observation data we extracted from x
            # become our RunningNorm's new data.
            self._sum = sum_of_x
            self._sum_of_squares = sum_of_x_squared
            self._count = n
        elif self._has_data():
            # If our RunningNorm is not empty, the stored data is updated with the
            # data extracted from x.
            self._sum += sum_of_x
            self._sum_of_squares += sum_of_x_squared
            self._count += n
        else:
            # This is an erroneous state where the internal data looks neither
            # existent nor completely empty.
            # This might be the result of a bug, or maybe this instance's
            # protected variables were tempered with from the outside.
            assert False, "RunningNorm is in an invalid state! This might be a bug."

update_and_normalize(self, x, mask=None)

Update the observation stats according to x, then normalize x.

Parameters:

Name Type Description Default
x Iterable

The observation(s), as a PyTorch tensor, or as an Iterable which can be converted to a PyTorch tensor. The shape of x can be the same with the observaiton shape, or it can be augmented with an extra leftmost dimension to express a batch of observations.

required
mask Optional[Iterable]

Can be given as a 1-dimensional Iterable of booleans ONLY if x represents a batch of observations. If a mask is provided, the i-th observation within the observation batch x will be taken into account only if the the i-th item of the mask is True.

None

Returns:

Type Description
Iterable

The normalized counterpart of the observation(s) expressed by x.

Source code in evotorch/neuroevolution/net/runningnorm.py
@torch.no_grad()
def update_and_normalize(self, x: Iterable, mask: Optional[Iterable] = None) -> Iterable:
    """
    Update the observation stats according to x, then normalize x.

    Args:
        x: The observation(s), as a PyTorch tensor, or as an Iterable
            which can be converted to a PyTorch tensor.
            The shape of x can be the same with the observaiton shape,
            or it can be augmented with an extra leftmost dimension
            to express a batch of observations.
        mask: Can be given as a 1-dimensional Iterable of booleans ONLY
            if `x` represents a batch of observations.
            If a `mask` is provided, the i-th observation within the
            observation batch `x` will be taken into account only if
            the the i-th item of the `mask` is True.
    Returns:
        The normalized counterpart of the observation(s) expressed by x.
    """
    result_as_numpy = not isinstance(x, torch.Tensor)
    x = self._verify(x)

    self.update(x, mask, verify=False)
    result = self.normalize(x, verify=False)

    if result_as_numpy:
        result = result.cpu().numpy()

    return result